T. Fühner |
Künstliche Evolution für die Optimierung von lithographischen Prozessbedingungen
Datum der Promotion: 24.09.2013
Dissertation im Volltext
Abstract: Miniaturisierung ist sowohl für die Leistungssteigerung als auch für die Kostensenkung von Halbleiterbauelementen von großer Bedeutung und wird daher mit einer enorm hohen Geschwindigkeit betrieben. Gordon Moore leitete daraus eine Schätzung ab, die besagt, dass die Hersteller gezwungen seien, etwa alle zwei Jahre die Dichte der integrierten Schaltungen zu verdoppeln. Und tatsächlich verfolgen die Hauptakteure der Industrie dieses Ziel — bekannt als Moore’s Law — noch heute. Photolithographie, einer der wichtigsten Prozessschritte, hat sich diesem Ziel unterzuordnen. In der Vergangenheit stellte die Einführung neuer Technologiestufen, einschließlich kleinerer Wellenlängen der Beleuchtungssysteme oder höhere numerische Aperturen (NA) der Projektionssysteme, einen relativ einfachen Ansatz dar, Schaltungsstrukturen zu verkleinern. Heute allerdings muss sich die optische Lithographie auf den Einsatz von Argon-basierten Excimer-Laser mit einer Wellenlänge von 193 Nanometer und einer NA von 1,35 beschränken. Die Einführung neuer Lithographie-Generationen, beispielsweiser unter Ausnutzung extrem ultravioletten (EUV) Lichtes, verzögert sich, so dass mit ihr erst in mehreren Jahren zu rechnen ist. Eine weitere Verkleinerung der Bauelemente führt so zu einer deutlichen Verschärfung der Anforderungen an den lithographischen Prozess, da Strukturen mit Abmessungen eines Bruchteiles der zur Verfügung stehenden Wellenlänge abgebildet werden müssen. In dieser Arbeit werden deshalb numerische Methoden entwickelt, die geeignet sind, Prozessbedingungen signifikant zu verbessern und damit Auflösungen jenseits vorheriger Beschränkungen zu erzielen. Der Lithographieprozess kann in folgende Komponenten unterteilt werden: das Beleuchtungssystem, die Photomaske, das Projektionssystem und das Schichtsystem auf der Halbleiterscheibe. Wie in dieser Dissertation gezeigt wird, weist jede dieser Komponenten eine große Anzahl optimierbarer Parameter auf. Um tatsächlich eine Verbesserung der Auflösung zu erzielen, ist jedoch der Einsatz umfassender Simulationswerkzeuge unabdingbar. Deren einzelne Bestandteile werden in dieser Arbeit erörtert. So werden die benötigten Modelle, die den Lithographieprozess beschreiben, vorgestellt und diskutiert. Es wird gezeigt, dass die numerische und algorithmische Umsetzung aus einem Kompromiss zwischen Genauigkeit und Rechenzeit besteht. Beide Kriterien sind entscheidend bei der Entwicklung eines prädiktiven und praktikablen Ansatzes. Eine weitere Komplikation ergibt sich aus der Multi-Skalen- und Multi-Physik-Eigenschaft prädiktiver Prozessmodelle. Obwohl es bisweilen möglich ist, reduzierte Modelle für ein spezielles Optimierungsproblem zu entwickeln, eignet sich ein solches Vorgehen im Allgemeinen nicht für die gleichzeitige Optimierung mehrerer Prozessaspekte. In dieser Arbeit wird daher ein Ansatz untersucht, der die direkte Nutzung exakter Modelle erlaubt. Als Optimierungsverfahren werden dabei evolutionäre Algorithmen (EA) entwickelt und verwendet. EAs bezeichnen probabilistische Verfahren, die evolutionäre Mechanismen wie Selektion, Rekombination und Mutation imitieren und sich durch ein hohes Maß an Flexibilität auszeichnen. Da es zahlreiche EA-Varianten gibt, widmet sich ein Kapitel dieser Arbeit der Diskussion und Untersuchung verschiedener Darstellungsoptionen und genetischer Operatoren. Dabei wird insbesondere die für diese Arbeit getroffene Auswahl motiviert. Der lithographische Prozess umfasst nicht nur eine Vielzahl an Parametern, sondern bedarf auch der Bewertung hinsichtlich verschiedener Kriterien, von denen nicht wenige wechselseitig unvereinbar oder unvergleichbar sind. So sind beispielsweise Herstellbarkeit und Leistungsfähigkeit im Allgemeinen inkommensurabel. Daher wird ein multikriterieller genetischer Algorithmus (GA), der speziell auf die Suche nach Kompromisslösungen zugeschnitten ist, implementiert und untersucht. Die Eigenschaften von Mehrzieloptimierung, insbesondere im Zusammenhang mit evolutionären Algorithmen, werden in dieser Arbeit eingehend diskutiert. Genau so wenig wie andere Optimierer können EAs als universell bezeichnet werden: Sie zeichnen sich zwar durch hohe Flexibilität aus, sind aber anderen Verfahren bei der intensiven Ausnutzung lokaler Informationen oft unterlegen. Eine Kombination evolutionärer und lokaler Suchalgorithmen bietet sich deshalb an. Ein entsprechendes hybrides Verfahren wird in dieser Arbeit entwickelt, und dessen Leistungsfähigkeit wird mit Hilfe einer Reihe von Benchmark-Funktionen demonstriert. Die Mehrzahl lithographischer Optimierungsprobleme ist durch rechenintensive Güteauswertungen charakterisiert. Die Zahl der Auswertungen muss daher auf ein Minimum reduziert werden. Es wird zu dem Zweck ein Ansatz verfolgt, bei dem die Fitnessfunktion durch eine deutlich schneller auszuwertende Ersatzfunktion genähert wird. Dabei kommt ein künstliches neuronales Netz zum Einsatz, das die durch den GA erzeugte Population aus Lösungskandidaten als Trainingsinstanzen nutzt, um so ein Modell der Fitnessfunktion zu erzeugen. Dieses Modell wird dann für eine intensive lokale Suche verwendet, während die globale GA-Suche auf der ursprünglichen, exakten Funktion durchgeführt wird. Die Effizienz und die Machbarkeit dieses Ansatzes wird an einer Reihe von Vergleichstests nachgewiesen. Die für diese Arbeit entwickelten Algorithmen, Frameworks und Programme stehen im Rahmen der Fraunhofer IISB Lithographiesimulationsumgebung Dr.LiTHO als Software-Module zur Verfügung. Der prinzipielle Aufbau der Recheninfrastruktur wird kurz diskutiert, insbesondere im Hinblick auf die entwickelten und verwendeten Verteilungs- und Parallelisierungsverfahren, ohne die praktikable Optimierungsläufe aufgrund der hohen Rechenzeiten nicht möglich wären. Eine Vielzahl von Anwendungsbeispielen zeigt die Vorteile der entwickelten Methoden. In einer Studie werden Beleuchtungsquellen/Photomasken-Optimierungsprobleme formuliert und gelöst. Im Gegensatz zu vergleichbaren Arbeiten, die zumeist auf vereinfachten, effizienten Modellen beruhen, wird hier ein direkter Ansatz verfolgt, der es erlaubt, exakte, in der Lithographiesimulation übliche Modelle zu verwenden. Mehrere Darstellungsvarianten werden vorgestellt und anhand zahlreicher Ergebnisse diskutiert. Die Flexibilität des Ansatzes wird unter anderem durch die Berücksichtigung von Maskentopographieeffekten demonstriert. Es wird ferner gezeigt, dass das Verfahren nicht auf die Auswertung von Luftbildern beschränkt ist, sondern auch andere Komponenten wie Prozessfenster oder Dünnfilmeffekte einbeziehen kann. Weitere Ergebnisse demonstrieren die Erweiterbarkeit des Verfahrens auf zukünftige Techniken zur Verbesserung der Auflösung, zum Beispiel, der Ausnutzung der Projektor-Aberrationskontrolle. Ziel einer weiteren Reihe von Simulationsexperimenten ist die dreidimensionale Maskenoptimierung, in der zusätzlich zur Quellen/Maken-Optimierung auch die Topographie und die Materialeigenschaften der Photomaske optimiert werden. Dabei können deutliche Verbesserungen im Vergleich zu Standardkonfigurationen erzielt werden. Optimierungsergebnisse sowohl für optische als auch für EUV-Lithographie werden präsentiert und diskutiert. Um alle Aspekte des Lithographieprozesses abzudecken, befasst sich der letzte Abschnitt der Arbeit mit dem Schichtsystem auf der Halbleiterscheibe. Als Beispiel wird die antireflektive Beschichtung auf der Unterseite des Photolackes optimiert. Diese Beschichtung wird eingesetzt, um eine Interferenz zwischen einfallendem und rückreflektiertem Licht zu verhindern, die zu stehende Wellen führt. Verschiedene Anordnungen, darunter Einzel- und Zweischichtsysteme, werden untersucht und verbessert. Ziel dieser Studie ist es insbesondere, die Veränderungen des Schichtsystems unter heute häufig verwendeten Mehrfachbelichtungsverfahren exakt zu beschreiben und zu verbessern. Die Dissertation schließt mit einer Diskussion sowohl der verschiedenen Optimierungsstrategien als auch der für diese Arbeit entwickelten Optimierungs- und Simulationsinfrastruktur. Vor- und Nachteile der Methodik werden hervorgehoben und mögliche zukünftige Anwendungen und Erweiterungen vorgestellt.
|